

PACE INSTITUTE OF TECHNOLOGY \& SCIENCES::ONGOLE (AUTONOMOUS)

II B.TECH I SEMESTER END REGULAR/SUPPLEMENTARY EXAMINATIONS, JAN - 2023 STRENGTH OF MATERIALS-I

(CE Branch)

Time: 3 hours
Max. Marks: 60
Note: Question Paper consists of Two parts (Part-A and Part-B)
PART-A
Answer all the questions in Part-A (5X2=10M)

Q.No.		Questions	Marks	CO	KL
1	a)	Draw the stress-strain diagram for mild steel.	$[2 \mathrm{M}]$	1	
	b)	Define Shear force and Bending moment.	$[2 \mathrm{M}]$	2	
	c)	Write the assumptions in the theory of simple bending.	$[2 \mathrm{M}]$	3	
	d)	What are the methods for finding out the slope and deflection at a section?	$[2 \mathrm{M}]$	4	
	e)	Distinguish between longitudinal and circumferential stresses.	$[2 \mathrm{M}]$	5	

PART-B
Answer One Question from each UNIT (5X10=50M)

		Questions	Marks	CO	KL
UNIT-I					
2.		Compare the strain energies of the two bars of the same material, shown in figure, when they are subjected to the same load. If $d=10 \mathrm{~mm}$. Find the strain energies of the two bars when the maximum stress in both the bars is equal to 200 MPa . Take $\mathrm{E}=200 \mathrm{GN} / \mathrm{m}^{2}$.	[10M]	1	
OR					
3.	a)	A uniform metal bar has a cross-sectional area of $700 \mathrm{~mm}^{2}$ and a length of 1.5 m . If the stress at the elastic limit is $160 \mathrm{~N} / \mathrm{mm}^{2}$, what will be its proof resilience? Determine also the maximum value of an applied load, which may be suddenly applied without exceeding the elastic limit. Calculate the value of the gradually applied load which will produce the same extension as that produced by the suddenly applied load above.	[5M]	1	

